
In Proc. Conf. on Computer Vision & Pattern Recognition Technical Sketches, Kauai, HI, December, 2001

Laser Range-, Color-, and Texture-based Classifiers

for Segmenting Marginal Roads

Christopher Rasmussen∗

National Institute of Standards and Technology

Gaithersburg, MD 20899

Abstract
We describe preliminary results on combining depth

information from a laser range-finder and color and
texture image cues to train classifiers to segment ill-
structured dirt, gravel, and asphalt roads as input to
an autonomous road following system. A large number
of registered laser and camera images were captured
at frame-rate on a variety of rural roads, allowing laser
features such as 3-D height and smoothness to be cor-
related with image features such color histograms and
Gabor filter responses. A small set of road models
were generated by training separate neural networks
on labeled feature vectors clustered by road “type.”
By first classifying the type of a novel road image,
an appropriate second-stage classifier was selected to
segment individual pixels, achieving a high degree of
accuracy on arbitrary images from the dataset.

1 Introduction
An autonomous vehicle navigating on- and off-road

(e.g., military reconnaissance) must be aware of dif-
ferent kinds of terrain in order to make prudent steer-
ing decisions. To minimize terrain-based dangers and
maximize speed, it is often desirable to use any roads
present in an area of operation for as much of a point-
to-point path as possible. This special case of gen-
eral terrain traversal, road following, requires an abil-
ity to discriminate between the road and surrounding
areas and is a well-studied visual task. Much work has
been done on driving along highways and other paved
or well-maintained roads [2, 3, 1], but marginal rural
and backcountry roads are less amenable to standard
techniques for a variety of reasons. There may be no
lane lines or markings; the road/non-road border is of-
ten spatially fuzzy and has low intensity contrast; the
overall road shape may not follow smooth curves and
the support surface may be highly non-planar; and
the appearance of the road itself can change drasti-
cally: mud, clay, sand, gravel, and asphalt may all be
encountered.

Algorithms that attempt to delineate the road via
region-based segmentation have been fairly success-
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ful. Color [5] and texture are two characteristics that
have been used to differentiate the road from border-
ing vegetation or dirt. Some work has also been done
on using 3-D information to constrain segmentation:
for example, [4] applied structure-from-motion tech-
niques to automatically detected and tracked features
in order to steer a vehicle along a dirt road in the
midst of dense trees. Visual and structural modalities
are clearly complementary: vision alone may be inad-
equate or unreliable in the presence of strong shadows,
glare, or poor weather, while road boundaries do not
necessarily coincide with 3-D structures—the height
border between a dirt road and short grass, for ex-
ample, is undetectable by most current methods and
sensors.

Classification offers a straightforward way to com-
bine these two sources of information. In this pa-
per, we report ongoing work on road segmentation
using a camera and a laser range-finder mounted on
an autonomous four wheel-drive vehicle. By framing
the problem as one of learning by labeled examples
whether small image patches (registered with laser
range information) belong to the road or background,
we can easily integrate disparate features such as 3-
D height and smoothness with image qualities like
color and texturedness. We contend that fusing these
modalities will yield better performance than any sin-
gle method. Because of the variety of road types that
must be handled, we also propose a method to auto-
matically learn different models for disparate charac-
teristics.

In the next three sections we will briefly describe
the background behind our approach, then detail our
experimental procedures and training and testing data,
and finally present results.

2 Road segmentation

Road segmentation can be framed as a classification
problem in which we wish to identify small patches
over the field of view as either road or non-road on
the basis of a number of properties, or features, that
we compute from them. These patches are manually
labeled for a representative set of images (Figure 1
shows some examples from our data), and a neural
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Figure 1: Sample road images

network [8] is trained to learn a decision boundary in
feature space. This model can be used to classify pix-
els in novel images, from which we can either (1) derive
road shape parameters directly by recursively estimat-
ing curvature, width, etc. from the edges of the road
region and control steering accordingly (analogous to
[1]); or (2) use the laser information to backproject
road and non-road regions into a 3-D map suitable for
a more general path planner, a method we are cur-
rently using that is shown in Figure 2.

We have two sensors available—a laser range-finder
which gives dense depth values and a video camera—
with differing fields of view and capture rates. By
registering the images obtained from each sensor both
spatially and temporally (our procedure is explained
in the next section), we can formulate an image pair

that contains correlated information from both. We
have chosen four basic kinds of features to distinguish
road patches from plants, rocks, tree, grass, and other
off-road zones—two from the laser half of the pair and
two from the image half. They are:

Height How far a laser point is vertically from the ve-
hicle support surface 1. This should allow bushes
and trees to be eliminated regardless of their vi-
sual appearance.

Smoothness The height variance in the neighbor-
hood of a laser point. Roads should be locally
flat, while tall grass and loose rocks are bumpier.

Color A color histogram [7] is computed over each
image patch. Roads are expected to be gener-

1A vehicle-centric coordinate system is chosen so that +Z

is forward with respect to the direction the vehicle is pointing,
+X is right, and +Y is up. The height h and tilt angle θ of the
camera/laser are known.

Figure 2: 3-D map with road painted white

ally brown or gray, while the background is more
green or blue if sky.

Texture Gabor filters [6] are computed over each im-
age patch to characterize the magnitude and dom-
inant direction of texturedness at different scales.

3 Implementation
Real-time video, laser range data, and inertial nav-

igation information were recorded from a robotic vehi-
cle tele-operated on a variety of dirt and asphalt roads
at Fort Indiantown Gap, PA in July, 2001. Approxi-
mately 73 min of late-morning driving at 8-24 km/h
were captured in 14 distinct sequences totaling 131,471
video frames.

The analog output of the camera, a Sony DXC-
390,2 was converted to DV before capture and then
subsampled, resulting in a final resolution of 360 ×

240 for image processing. The laser range-finder, a
Schwartz SEO LADAR, acquires a 180 × 32 array of
range values at ≈ 20 Hz covering a field of view of 90◦

horizontally and 15◦ vertically.
For training, 120 video frames were randomly cho-

sen and the most-nearly synchronous laser range im-
age was paired with each. Of these, nine image pairs
were eliminated due to missing data in the laser image
(a hardware artifact) and four because the vehicle was
not on a road. This left 107 image pairs for training
and testing. One contiguous road region was manually
marked in each camera image with a single polygon

2Certain commercial equipment, instruments, or materials
are identified in this paper to specify experimental procedures
adequately. Such identification is not intended to imply recom-
mendation or endorsement by NIST, nor that the materials or
equipment identified are necessarily the best available for the
purpose.



(some “two-track” roads with grass growing down the
middle necessitated somewhat contorted boundaries
to exclude these areas).

Feature vectors were computed for each image at
10-pixel intervals vertically and horizontally, with roughly
a 20-pixel margin to ensure that filter kernels remained
entirely within the image. This resulted in 640 feature
vectors per image. Centered on each feature location,
three different sizes of subimage were examined for
feature computation: 7 × 7, 15 × 15, and 31× 31.

Two kinds of color features were computed over
these three scales: a standard 4-bins-per-RGB-channel
joint color histogram (43 total bins), and an “indepen-
dent” color histogram consisting of 8 bins per channel
(8 × 3 total bins).

Texture features consisted of the odd- and even-
phase responses of a bank of Gabor filters histogrammed
over the 7×7 and 15×15 scales (8 bins per phase with
limits defined by the max and min filter response on
each particular image). For each phase, the Gabor fil-
ter bank consisted of three wavelengths (2, 4, and 8—
resulting in kernel sizes of 6× 6, 12× 12, and 25× 25,
respectively) and eight equally-spaced orientations.

Laser features were obtained for only a subset of the
total feature locations in an image. For the two largest
scales, the mean and covariance were computed of the
X, Y, Z coordinates of the n laser points projecting
to the local 15 × 15 or 31 × 31 image neighborhood
(n > 1).

The camera’s internal parameters were calibrated
using Bouguet’s Matlab toolbox [10]. The external
orientation between the camera and LADAR was ob-
tained by correlating corresponding points imaged by
each device over a number of scenes and then comput-
ing a least-squares fit to the transformation according
to the procedure described in [11].

The Matlab Neural Network Toolbox [12] was used
to train the neural networks in this paper. Each neural
network had one hidden layer consisting of 20 hidden
units; weights were updated using conjugate-gradient
back-propagation with the “tansig” activation func-
tion. During training, the classification accuracy of a
particular neural network was estimated using cross-
validation, where 3

4
of any given data set was used for

training and the remaining 1

4
for testing, rotating the

testing fraction four times. The quoted accuracy is
the median of the four testing accuracies.

4 Results
One model per image From the 107 random camera-
laser pairs, one representative of each sequence with
the lowest frame number (i.e., earliest in the sequence)
was chosen. By chance, every sequence had a repre-

Figure 3: Laser-camera registration

sentative. Some of the camera images from these 14
pairs I1, . . . , I14 are shown in Figure 1.

Neural networks were trained on each Ii using dif-
ferent feature subsets in order to assess the usefulness
of color, texture, and laser cues for road classification.
In the image domain, these feature subsets included
the independent and joint color histograms described
in the previous section over all three subimage sizes
and the Gabor response histogram over two sizes.

For the laser the mean Y value, the variance of Y ,
and the Y mean and variance together were examined
over two subimage sizes. The Y mean allows discrim-
ination based on height relative to the base of the ve-
hicle’s tires, while the Y variance was included as a
simple measure of smoothness. As Figure 3 shows,
not every image location has laser information associ-
ated with it. Only those feature vectors with adequate
laser information (> 1 point projecting into its subim-
age) were included in training with any feature subset
that was not exclusively image-based.

Altogether, eight image feature subsets and six laser
subsets were tested initially. Taking the median accu-
racy of each feature subset over all 14 images, the best
performers by category were the 15× 15 independent
color histogram with 97.3%, the 15 × 15 Gabor his-
togram with 88.6%, and the 31×31 laser Y mean and
variance at 84.6%3. All combinations of feature sets

3Using principal component analysis to transform the fea-
ture space before learning improved performance slightly for
color features and decreased it for texture features. The cost



Features SS% SA% AA% AS%

C + T 97.8 62.1 92.7 94.0
C + L 96.0 74.6 88.4 89.4
T + L 92.2 55.6 78.8 81.6

C+T+L 95.8 60.2 91.4 91.9

Table 1: Median feature subset performance for vari-
ous training and testing regimes. Features: C=color,
T=texture, L=laser. Data sets: S=14 individual im-
ages; A=all-image digest (first letter=training, sec-
ond=testing).

comprising these best individual performers (color and
texture, texture and laser, etc.) were then trained,
with the results shown in the SS column of Table 1.

As a baseline for performance assessment, the me-
dian proportion of feature vectors labeled “road” over
each of the the 14 pairs was 48.8%. For the portion of
feature vectors containing laser information, this road
fraction was higher: 59.9% for the 15 × 15 subimages
and 57.0% for the 31× 31 ones.

One model for all images To test learning a sin-
gle road model for the entire corpus as well as the
generality of the individual image models, a digest D

was created from the set of 107 images by randomly
selecting 5% of each image’s feature vectors and con-
catenating them. Training was performed on D for the
four combined feature sets exactly as if it were a larger
version of an image Ii, yielding good results which are
shown in the AA column of the table. The poor gen-
erality of the single-image models learned in the previ-
ous subsection is demonstrated by testing them on D;
the median performance over the 14 images is given in
column SA of the table. Accuracy drops dramatically
because of the presentation of road and background
types not seen in the single image training.

The representative fidelity of using the digest for
training can be seen in the similarity of the scores ob-
tained in column AS by training on the digest and
testing on the individual images to those achieved by
training and testing on the digest alone (AA). How-
ever, the performance declines slightly for each feature
set when switching training from individual images to
D. This is likely because the variety of road and back-
ground types in D cause a greater mixing of road/non-
road points in feature space, necessarily increasing the
error of any decision surface.

of computing the transformation did not seem to be worth the
mixed results.

One model per road type Of D’s 3424 feature
vectors, 1619 or 47.3% were labeled “road.” k-means
clustering [13] was used to group road-labeled feature
vectors in D (k = 2, 3, 4, 5) for the best color feature
set, the best texture feature set, and the best color
and texture feature set4. Roads were not clustered
with laser feature information because the major vari-
ation in road types for this data is visual: dirt, gravel,
and asphalt have marked differences in color and de-
gree of texturedness, but all roads were approximately
smooth and at the same height relative to the vehicle.

The road type of each of the 14 representative pairs
was computed from the nearest cluster center to the
mean of a small set of feature vectors assumed to be
inside that image’s road region. This set of 4 × 4
feature locations was defined by a square centered
horizontally in the image and at its bottom (roughly
165 ≤ x ≤ 185, 180 ≤ y ≤ 210). For a particular
feature set and k, a digest Di was made for every
cluster by taking a nearly equal number of randomly
selected feature vectors (including laser information
ignored during the clustering process) from the im-
ages in it such that the size of Di was 640. A separate
neural network was trained for each cluster’s digest.

Using just the best color feature set for clustering,
for example, the median training accuracy for the color
and laser combination over all of the clusters is 90.2%
for k = 2, 94.5% for k = 3, 92.7% for k = 4, and 93.3%
for k = 5. Compared with the model-per-image and
one-model results in the second row of Table 1, this
multi-type approach looks quite good. The perfor-
mance surpasses that of fitting one model to all of the
data, while still exhibiting the generality that training
one model per image clearly lacks.

5 Conclusion
We presented a preliminary version of a road seg-

mentation system that integrates information from a
registered laser range-finder and camera. Road height,
smoothness, color, and texture were combined to yield
higher performance than individual cues could achieve.
By clustering the roads into a few different types and
training a neural network for each, accuracy on the
entire image corpus was improved over a simple single-
model approach while still retaining good generality.

We have obtained encouraging results using sup-
port vector machines with a radial basis function ker-
nel [9] as a road classifier, but did not have time to test
them on all of the data. For completeness, we would
also like to try a few other values for the number of

4The algorithm was run 50 times for each k and feature
set; the result exhibiting the lowest within-cluster scatter to
between-cluster scatter ratio was used.



neural network hidden units. Furthermore, the data
set needs to be augmented to capture the visual and
structural effects of temporal variations such as time
of day, weather, and season for more generality.
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